A geometric criterion for the non-uniform hyperbolicity of the Kontsevich--Zorich cocycle
Abstract: We prove a geometric criterion on a $\SL$-invariant ergodic probability measure on the moduli space of holomorphic abelian differentials on Riemann surfaces for the non-uniform hyperbolicity of the Kontsevich--Zorich cocycle on the real Hodge bundle. Applications include measures supported on the $\SL$-orbits of all algebraically primitive Veech surfaces (see also \cite{Bouw:Moeller}) and of all Prym eigenforms discovered in \cite{McMullen2}, as well as all canonical absolutely continuous measures on connected components of strata of the moduli space of abelian differentials (see also \cite{Ftwo}, \cite{Avila:Viana}). The argument simplifies and generalizes our proof for the case of canonical measures \cite{Ftwo}. In an Appendix Carlos Matheus discusses several relevant examples which further illustrate the power and the limitations of our criterion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.