Non-uniform hyperbolicity and existence of absolutely continuous invariant measures
Abstract: We prove that for certain partially hyperbolic skew-products, non-uniform hyperbolicity along the leaves implies existence of a finite number of ergodic absolutely continuous invariant probability measures which describe the asymptotics of almost every point. The main technical tool is an extension for sequences of maps of a result of de Melo and van Strien relating hyperbolicity to recurrence properties of orbits. As a consequence of our main result, we also obtain a partial extension of Keller's theorem guaranteeing the existence of absolutely continuous invariant measures for non-uniformly hyperbolic one dimensional maps.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.