Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-uniform hyperbolicity and existence of absolutely continuous invariant measures

Published 16 Dec 2012 in math.DS | (1212.3820v1)

Abstract: We prove that for certain partially hyperbolic skew-products, non-uniform hyperbolicity along the leaves implies existence of a finite number of ergodic absolutely continuous invariant probability measures which describe the asymptotics of almost every point. The main technical tool is an extension for sequences of maps of a result of de Melo and van Strien relating hyperbolicity to recurrence properties of orbits. As a consequence of our main result, we also obtain a partial extension of Keller's theorem guaranteeing the existence of absolutely continuous invariant measures for non-uniformly hyperbolic one dimensional maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.