Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compactly Supported Shearlets (1009.4359v2)

Published 22 Sep 2010 in math.FA

Abstract: Shearlet theory has become a central tool in analyzing and representing 2D data with anisotropic features. Shearlet systems are systems of functions generated by one single generator with parabolic scaling, shearing, and translation operators applied to it, in much the same way wavelet systems are dyadic scalings and translations of a single function, but including a precise control of directionality. Of the many directional representation systems proposed in the last decade, shearlets are among the most versatile and successful systems. The reason for this being an extensive list of desirable properties: shearlet systems can be generated by one function, they provide precise resolution of wavefront sets, they allow compactly supported analyzing elements, they are associated with fast decomposition algorithms, and they provide a unified treatment of the continuum and the digital realm. The aim of this paper is to introduce some key concepts in directional representation systems and to shed some light on the success of shearlet systems as directional representation systems. In particular, we will give an overview of the different paths taken in shearlet theory with focus on separable and compactly supported shearlets in 2D and 3D. We will present constructions of compactly supported shearlet frames in those dimensions as well as discuss recent results on the ability of compactly supported shearlet frames satisfying weak decay, smoothness, and directional moment conditions to provide optimally sparse approximations of cartoon-like images in 2D as well as in 3D. Finally, we will show that these compactly supported shearlet systems provide optimally sparse approximations of an even generalized model of cartoon-like images comprising of $C2$ functions that are smooth apart from piecewise $C2$ discontinuity edges.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.