Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimally Sparse Frames (1009.3663v3)

Published 19 Sep 2010 in math.NA, cs.IT, math.FA, and math.IT

Abstract: Frames have established themselves as a means to derive redundant, yet stable decompositions of a signal for analysis or transmission, while also promoting sparse expansions. However, when the signal dimension is large, the computation of the frame measurements of a signal typically requires a large number of additions and multiplications, and this makes a frame decomposition intractable in applications with limited computing budget. To address this problem, in this paper, we focus on frames in finite-dimensional Hilbert spaces and introduce sparsity for such frames as a new paradigm. In our terminology, a sparse frame is a frame whose elements have a sparse representation in an orthonormal basis, thereby enabling low-complexity frame decompositions. To introduce a precise meaning of optimality, we take the sum of the numbers of vectors needed of this orthonormal basis when expanding each frame vector as sparsity measure. We then analyze the recently introduced algorithm Spectral Tetris for construction of unit norm tight frames and prove that the tight frames generated by this algorithm are in fact optimally sparse with respect to the standard unit vector basis. Finally, we show that even the generalization of Spectral Tetris for the construction of unit norm frames associated with a given frame operator produces optimally sparse frames.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.