Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Semi-Markov Conditional Random Fields for Recursive Sequential Data (1009.2009v1)

Published 10 Sep 2010 in stat.ML and cs.AI

Abstract: Inspired by the hierarchical hidden Markov models (HHMM), we present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of embedded undirectedMarkov chains tomodel complex hierarchical, nestedMarkov processes. It is parameterised in a discriminative framework and has polynomial time algorithms for learning and inference. Importantly, we consider partiallysupervised learning and propose algorithms for generalised partially-supervised learning and constrained inference. We demonstrate the HSCRF in two applications: (i) recognising human activities of daily living (ADLs) from indoor surveillance cameras, and (ii) noun-phrase chunking. We show that the HSCRF is capable of learning rich hierarchical models with reasonable accuracy in both fully and partially observed data cases.

Citations (37)

Summary

We haven't generated a summary for this paper yet.