Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria (1009.0977v2)

Published 6 Sep 2010 in math.DS, math-ph, and math.MP

Abstract: We study bifurcations of homoclinic orbits to hyperbolic saddle equilibria in a class of four-dimensional systems which may be Hamiltonian or not. Only one parameter is enough to treat these types of bifurcations in Hamiltonian systems but two parameters are needed in general systems. We apply a version of Melnikov's method due to Gruendler to obtain saddle-node and pitchfork types of bifurcation results for homoclinic orbits. Furthermore we prove that if these bifurcations occur, then the variational equations around the homoclinic orbits are integrable in the meaning of differential Galois theory under the assumption that the homoclinic orbits lie on analytic invariant manifolds. We illustrate our theories with an example which arises as stationary states of coupled real Ginzburg-Landau partial differential equations, and demonstrate the theoretical results by numerical ones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube