Papers
Topics
Authors
Recent
Search
2000 character limit reached

Results on the Ratliff-Rush Closure and the Integral Closedness of Powers of Certain Monomial Curves

Published 3 Sep 2010 in math.AC | (1009.0787v1)

Abstract: Starting from \cite{Ayy2} we compute the Groebner basis for the defining ideal, P, of the monomial curves that correspond to arithmetic sequences, and then give an elegant description of the generators of powers of the initial ideal of P, inP. The first result of this paper introduces a procedure for generating infinite families of Ratliff-Rush ideals, in polynomial rings with multivariables, from a Ratliff-Rush ideal in polynomial rings with two variables. The second result is to prove that all powers of inP are Ratliff-Rush. The proof is through applying the first result of this paper combined with Corollary (12) in \cite{Ayy4}. This generalizes the work of \cite{Ayy1} (or \cite{Ayy11}) for the case of arithmetic sequences. Finally, we apply the main result of \cite{Ayy3} to give the necessary and sufficient conditions for the integral closedness of any power of inP.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.