Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Switching between Hidden Markov Models using Fixed Share (1008.4532v1)

Published 26 Aug 2010 in cs.LG

Abstract: In prediction with expert advice the goal is to design online prediction algorithms that achieve small regret (additional loss on the whole data) compared to a reference scheme. In the simplest such scheme one compares to the loss of the best expert in hindsight. A more ambitious goal is to split the data into segments and compare to the best expert on each segment. This is appropriate if the nature of the data changes between segments. The standard fixed-share algorithm is fast and achieves small regret compared to this scheme. Fixed share treats the experts as black boxes: there are no assumptions about how they generate their predictions. But if the experts are learning, the following question arises: should the experts learn from all data or only from data in their own segment? The original algorithm naturally addresses the first case. Here we consider the second option, which is more appropriate exactly when the nature of the data changes between segments. In general extending fixed share to this second case will slow it down by a factor of T on T outcomes. We show, however, that no such slowdown is necessary if the experts are hidden Markov models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tim van Erven (32 papers)
  2. Wouter M. Koolen (25 papers)
Citations (2)