Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster Editing: Kernelization based on Edge Cuts (1008.4250v3)

Published 25 Aug 2010 in cs.DS

Abstract: Kernelization algorithms for the {\sc cluster editing} problem have been a popular topic in the recent research in parameterized computation. Thus far most kernelization algorithms for this problem are based on the concept of {\it critical cliques}. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the {\sc cluster editing} problem. Our techniques are based on the study of the relationship between {\sc cluster editing} and graph edge-cuts. As an application, we present an ${\cal O}(n2)$-time algorithm that constructs a $2k$ kernel for the {\it weighted} version of the {\sc cluster editing} problem. Our result meets the best kernel size for the unweighted version for the {\sc cluster editing} problem, and significantly improves the previous best kernel of quadratic size for the weighted version of the problem.

Citations (91)

Summary

We haven't generated a summary for this paper yet.