Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Long-Time Asymptotics of Perturbed Finite-Gap Korteweg-de Vries Solutions (1008.3698v2)

Published 22 Aug 2010 in nlin.SI and math.AP

Abstract: We apply the method of nonlinear steepest descent to compute the long-time asymptotics of solutions of the Korteweg--de Vries equation which are decaying perturbations of a quasi-periodic finite-gap background solution. We compute a nonlinear dispersion relation and show that the $x/t$ plane splits into $g+1$ soliton regions which are interlaced by $g+1$ oscillatory regions, where $g+1$ is the number of spectral gaps. In the soliton regions the solution is asymptotically given by a number of solitons travelling on top of finite-gap solutions which are in the same isospectral class as the background solution. In the oscillatory region the solution can be described by a modulated finite-gap solution plus a decaying dispersive tail. The modulation is given by phase transition on the isospectral torus and is, together with the dispersive tail, explicitly characterized in terms of Abelian integrals on the underlying hyperelliptic curve.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.