Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures (1008.3629v1)

Published 21 Aug 2010 in cs.IT and math.IT

Abstract: Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Different quality measures were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good quality measure remains a challenging task for a user. Given a quality measures evaluation matrix according to semantic properties, this paper describes how FCA can highlight quality measures with similar behavior in order to help the user during his choice. The aim of this article is the discovery of Interestingness Measures "IM" clusters, able to validate those found due to the hierarchical and partitioning clustering methods "AHC" and "k-means". Then, based on the theoretical study of sixty one interestingness measures according to nineteen properties, proposed in a recent study, "FCA" describes several groups of measures.

Citations (7)

Summary

We haven't generated a summary for this paper yet.