Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved RANSAC performance using simple, iterative minimal-set solvers

Published 8 Jul 2010 in cs.CV | (1007.1432v1)

Abstract: RANSAC is a popular technique for estimating model parameters in the presence of outliers. The best speed is achieved when the minimum possible number of points is used to estimate hypotheses for the model. Many useful problems can be represented using polynomial constraints (for instance, the determinant of a fundamental matrix must be zero) and so have a number of solutions which are consistent with a minimal set. A considerable amount of effort has been expended on finding the constraints of such problems, and these often require the solution of systems of polynomial equations. We show that better performance can be achieved by using a simple optimization based approach on minimal sets. For a given minimal set, the optimization approach is not guaranteed to converge to the correct solution. However, when used within RANSAC the greater speed and numerical stability results in better performance overall, and much simpler algorithms. We also show that by selecting more than the minimal number of points and using robust optimization can yield better results for very noisy by reducing the number of trials required. The increased speed of our method demonstrated with experiments on essential matrix estimation.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.