Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ANSAC: Adaptive Non-minimal Sample and Consensus (1709.09559v1)

Published 27 Sep 2017 in cs.CV

Abstract: While RANSAC-based methods are robust to incorrect image correspondences (outliers), their hypothesis generators are not robust to correct image correspondences (inliers) with positional error (noise). This slows down their convergence because hypotheses drawn from a minimal set of noisy inliers can deviate significantly from the optimal model. This work addresses this problem by introducing ANSAC, a RANSAC-based estimator that accounts for noise by adaptively using more than the minimal number of correspondences required to generate a hypothesis. ANSAC estimates the inlier ratio (the fraction of correct correspondences) of several ranked subsets of candidate correspondences and generates hypotheses from them. Its hypothesis-generation mechanism prioritizes the use of subsets with high inlier ratio to generate high-quality hypotheses. ANSAC uses an early termination criterion that keeps track of the inlier ratio history and terminates when it has not changed significantly for a period of time. The experiments show that ANSAC finds good homography and fundamental matrix estimates in a few iterations, consistently outperforming state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.