Papers
Topics
Authors
Recent
2000 character limit reached

Classification of real Bott manifolds and acyclic digraphs

Published 23 Jun 2010 in math.AT and math.CO | (1006.4658v2)

Abstract: We completely characterize real Bott manifolds up to affine diffeomorphism in terms of three simple matrix operations on square binary matrices obtained from strictly upper triangular matrices by permuting rows and columns simultaneously. We also prove that any graded ring isomorphism between the cohomology rings of real Bott manifolds with $\mathbb Z/2$ coefficients is induced by an affine diffeomorphism between the real Bott manifolds. Our characterization can also be described in terms of graph operations on directed acyclic graphs. Using this combinatorial interpretation, we prove that the decomposition of a real Bott manifold into a product of indecomposable real Bott manifolds is unique up to permutations of the indecomposable factors. Finally, we produce some numerical invariants of real Bott manifolds from the viewpoint of graph theory and discuss their topological meaning. As a by-product, we prove that the toral rank conjecture holds for real Bott manifolds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.