Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Region-Based Image Querying (1006.4588v1)

Published 23 Jun 2010 in cs.CV

Abstract: Retrieving images from large and varied repositories using visual contents has been one of major research items, but a challenging task in the image management community. In this paper we present an efficient approach for region-based image classification and retrieval using a fast multi-level neural network model. The advantages of this neural model in image classification and retrieval domain will be highlighted. The proposed approach accomplishes its goal in three main steps. First, with the help of a mean-shift based segmentation algorithm, significant regions of the image are isolated. Secondly, color and texture features of each region are extracted by using color moments and 2D wavelets decomposition technique. Thirdly the multi-level neural classifier is trained in order to classify each region in a given image into one of five predefined categories, i.e., "Sky", "Building", "SandnRock", "Grass" and "Water". Simulation results show that the proposed method is promising in terms of classification and retrieval accuracy results. These results compare favorably with the best published results obtained by other state-of-the-art image retrieval techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.