Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Preconditioned Conjugate Gradients, Radial Basis Functions and Toeplitz Matrices (1006.2453v1)

Published 12 Jun 2010 in math.NA

Abstract: Radial basis functions provide highly useful and flexible interpolants to multivariate functions. Further, they are beginning to be used in the numerical solution of partial differential equations. Unfortunately, their construction requires the solution of a dense linear system. Therefore much attention has been given to iterative methods. In this paper, we present a highly efficient preconditioner for the conjugate gradient solution of the interpolation equations generated by gridded data. Thus our method applies to the corresponding Toeplitz matrices. The number of iterations required to achieve a given tolerance is independent of the number of variables.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.