Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Resummation of Threshold, Low- and High-Energy Expansions for Heavy-Quark Correlators (1006.0643v2)

Published 3 Jun 2010 in hep-ph, hep-lat, hep-th, math-ph, and math.MP

Abstract: With the help of the Mellin-Barnes transform, we show how to simultaneously resum the expansion of a heavy-quark correlator around q2=0 (low-energy), q2= 4 m2 (threshold, where m is the quark mass) and q2=-\infty (high-energy) in a systematic way. We exemplify the method for the perturbative vector correlator at O(alpha_s2) and O(alpha_s3). We show that the coefficients, Omega(n), of the Taylor expansion of the vacuum polarization function in terms of the conformal variable \omega admit, for large n, an expansion in powers of 1/n (up to logarithms of n) that we can calculate exactly. This large-n expansion has a sign-alternating component given by the logarithms of the OPE, and a fixed-sign component given by the logarithms of the threshold expansion in the external momentum q2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube