Papers
Topics
Authors
Recent
2000 character limit reached

Motivic decompositions of projective homogeneous varieties and change of coefficients

Published 26 Apr 2010 in math.AG | (1004.4417v2)

Abstract: We prove that under some assumptions on an algebraic group $G$, indecomposable direct summands of the motive of a projective $G$-homogeneous variety with coefficients in $\mathbb{F}_p$ remain indecomposable if the ring of coefficients is any field of characteristic $p$. In particular for any projective $G$-homogeneous variety $X$, the decomposition of the motive of $X$ in a direct sum of indecomposable motives with coefficients in any finite field of characteristic $p$ corresponds to the decomposition of the motive of $X$ with coefficients in $\mathbb{F}_p$. We also construct a counterexample to this result in the case where $G$ is arbitrary.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.