Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient

Published 24 Apr 2010 in cs.IT and math.IT | (1004.4299v1)

Abstract: We consider a set up where a file of size M is stored in n distributed storage nodes, using an (n,k) minimum storage regenerating (MSR) code, i.e., a maximum distance separable (MDS) code that also allows efficient exact-repair of any failed node. The problem of interest in this paper is to minimize the repair bandwidth B for exact regeneration of a single failed node, i.e., the minimum data to be downloaded by a new node to replace the failed node by its exact replica. Previous work has shown that a bandwidth of B=[M(n-1)]/[k(n-k)] is necessary and sufficient for functional (not exact) regeneration. It has also been shown that if k < = max(n/2, 3), then there is no extra cost of exact regeneration over functional regeneration. The practically relevant setting of low-redundancy, i.e., k/n>1/2 remains open for k>3 and it has been shown that there is an extra bandwidth cost for exact repair over functional repair in this case. In this work, we adopt into the distributed storage context an asymptotically optimal interference alignment scheme previously proposed by Cadambe and Jafar for large wireless interference networks. With this scheme we solve the problem of repair bandwidth minimization for (n,k) exact-MSR codes for all (n,k) values including the previously open case of k > \max(n/2,3). Our main result is that, for any (n,k), and sufficiently large file sizes, there is no extra cost of exact regeneration over functional regeneration in terms of the repair bandwidth per bit of regenerated data. More precisely, we show that in the limit as M approaches infinity, the ratio B/M = (n-1)/(k(n-k))$.

Citations (69)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.