Papers
Topics
Authors
Recent
2000 character limit reached

Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids (1003.5257v3)

Published 27 Mar 2010 in cs.NA

Abstract: In this paper, we consider anisotropic diffusion with decay, and the diffusivity coefficient to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with increase in the decay coefficient for isotropic medium and violates the discrete maximum principle. However, in the case of isotropic medium, the extent of violation decreases with mesh refinement. We then show that, in the case of anisotropic medium, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.