Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Triangular Decomposition of Semi-algebraic Systems (1002.4784v2)

Published 25 Feb 2010 in cs.SC, cs.CG, and cs.MS

Abstract: Regular chains and triangular decompositions are fundamental and well-developed tools for describing the complex solutions of polynomial systems. This paper proposes adaptations of these tools focusing on solutions of the real analogue: semi-algebraic systems. We show that any such system can be decomposed into finitely many {\em regular semi-algebraic systems}. We propose two specifications of such a decomposition and present corresponding algorithms. Under some assumptions, one type of decomposition can be computed in singly exponential time w.r.t.\ the number of variables. We implement our algorithms and the experimental results illustrate their effectiveness.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.