Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Role of Interestingness Measures in CAR Rule Ordering for Associative Classifier: An Empirical Approach (1001.3478v1)

Published 20 Jan 2010 in cs.LG

Abstract: Associative Classifier is a novel technique which is the integration of Association Rule Mining and Classification. The difficult task in building Associative Classifier model is the selection of relevant rules from a large number of class association rules (CARs). A very popular method of ordering rules for selection is based on confidence, support and antecedent size (CSA). Other methods are based on hybrid orderings in which CSA method is combined with other measures. In the present work, we study the effect of using different interestingness measures of Association rules in CAR rule ordering and selection for associative classifier.

Citations (7)

Summary

We haven't generated a summary for this paper yet.