Monoidal 2-structure of Bimodule Categories
Abstract: We define a notion of tensor product of bimodule categories and prove that with this product the 2-category of C-bimodule categories for fixed tensor C is a monoidal 2-category in the sense of Kapranov and Voevodsky. We then provide a monoidal-structure preserving 2-equivalence between the 2-category of C-bimodule categories and Z(C)-module categories (module categories over the center). For finite group G we show that de-equivariantization is equivalent to tensor product over category Rep(G) of finite dimensional representations. We derive Rep(G)-module fusion rules and determine the group of invertible irreducible Rep(G)-module categories extending earlier results for abelian groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.