Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple proof that random matrices are democratic (0911.0736v1)

Published 4 Nov 2009 in math.NA, cs.IT, and math.IT

Abstract: The recently introduced theory of compressive sensing (CS) enables the reconstruction of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be significantly smaller than the ambient dimension of the signal and yet preserve the significant signal information. Interestingly, it can be shown that random measurement schemes provide a near-optimal encoding in terms of the required number of measurements. In this report, we explore another relatively unexplored, though often alluded to, advantage of using random matrices to acquire CS measurements. Specifically, we show that random matrices are democractic, meaning that each measurement carries roughly the same amount of signal information. We demonstrate that by slightly increasing the number of measurements, the system is robust to the loss of a small number of arbitrary measurements. In addition, we draw connections to oversampling and demonstrate stability from the loss of significantly more measurements.

Citations (59)

Summary

We haven't generated a summary for this paper yet.