Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured random measurements in signal processing (1401.1106v2)

Published 6 Jan 2014 in cs.IT and math.IT

Abstract: Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.

Citations (26)

Summary

We haven't generated a summary for this paper yet.