Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements (1306.4748v4)

Published 20 Jun 2013 in cs.IT and math.IT

Abstract: Compressive Sensing (CS) exploits the surprising fact that the information contained in a sparse signal can be preserved in a small number of compressive, often random linear measurements of that signal. Strong theoretical guarantees have been established concerning the embedding of a sparse signal family under a random measurement operator and on the accuracy to which sparse signals can be recovered from noisy compressive measurements. In this paper, we address similar questions in the context of a different modeling framework. Instead of sparse models, we focus on the broad class of manifold models, which can arise in both parametric and non-parametric signal families. Using tools from the theory of empirical processes, we improve upon previous results concerning the embedding of low-dimensional manifolds under random measurement operators. We also establish both deterministic and probabilistic instance-optimal bounds in $\ell_2$ for manifold-based signal recovery and parameter estimation from noisy compressive measurements. In line with analogous results for sparsity-based CS, we conclude that much stronger bounds are possible in the probabilistic setting. Our work supports the growing evidence that manifold-based models can be used with high accuracy in compressive signal processing.

Citations (67)

Summary

We haven't generated a summary for this paper yet.