Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic partial binary circulant compressed sensing matrices (1911.07497v1)

Published 18 Nov 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representation. This is achieved by collecting linear, non-adaptive measurements of a signal, which can be formalized as multiplying the signal with a "measurement matrix". Most of matrices used in CS are random matrices as they satisfy the restricted isometry property (RIP) in an optimal regime of number of measurements with high probability. However, these matrices have their own caveats and for this reason, deterministic measurement matrices have been proposed. While there is a wide classes of deterministic matrices in the literature, we propose a novel class of deterministic matrices using the Legendre symbol. This construction has a simple structure, it enjoys being a binary matrix, and having a partial circulant structure which provides a fast matrix-vector multiplication and a fast reconstruction algorithm. We will derive a bound on the sparsity level of signals that can be measured (and be reconstructed) with this class of matrices. We perform quantization using these matrices, and we verify the performance of these matrices (and compare with other existing constructions) numerically.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arman Arian (3 papers)
  2. Ozgur Yilmaz (31 papers)

Summary

We haven't generated a summary for this paper yet.