Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Evolutionary Squeaky Wheel Optimisation Approach to Personnel Scheduling

Published 16 Oct 2009 in cs.AI, cs.CE, and cs.NE | (0910.3068v1)

Abstract: The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling problems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisation's effectiveness and execution speed by incorporating two extra steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repairs are carried out by using the Prioritization to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvement in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with interative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.

Citations (59)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.