Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solar radiation forecasting using ad-hoc time series preprocessing and neural networks (0906.0311v1)

Published 1 Jun 2009 in cs.AI, cs.NA, and physics.data-an

Abstract: In this paper, we present an application of neural networks in the renewable energy domain. We have developed a methodology for the daily prediction of global solar radiation on a horizontal surface. We use an ad-hoc time series preprocessing and a Multi-Layer Perceptron (MLP) in order to predict solar radiation at daily horizon. First results are promising with nRMSE < 21% and RMSE < 998 Wh/m2. Our optimized MLP presents prediction similar to or even better than conventional methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors approximators. Moreover we found that our data preprocessing approach can reduce significantly forecasting errors.

Citations (65)

Summary

We haven't generated a summary for this paper yet.