Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jucys-Murphy Elements and Unitary Matrix Integrals

Published 13 May 2009 in math.CO, math-ph, math.MP, math.PR, and math.RT | (0905.1992v3)

Abstract: In this paper, we study the relationship between polynomial integrals on the unitary group and the conjugacy class expansion of symmetric functions in Jucys-Murphy elements. Our main result is an explicit formula for the top coefficients in the class expansion of monomial symmetric functions in Jucys-Murphy elements, from which we recover the first order asymptotics of polynomial integrals over $\U(N)$ as $N \rightarrow \infty$. Our results on class expansion include an analogue of Macdonald's result for the top connection coefficients of the class algebra, a generalization of Stanley and Olshanski's result on the polynomiality of content statistics on Plancherel-random partitions, and an exact formula for the multiplicity of the class of full cycles in the expansion of a complete symmetric function in Jucys-Murphy elements. The latter leads to a new combinatorial interpretation of the Carlitz-Riordan central factorial numbers.

Citations (74)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.