Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Complete homogeneous symmetric polynomials in Jucys-Murphy elements and the Weingarten function (0811.3595v2)

Published 21 Nov 2008 in math.CO

Abstract: A connection is made between complete homogeneous symmetric polynomials in Jucys-Murphy elements and the unitary Weingarten function from random matrix theory. In particular we show that $h_r(J_1,...,J_n),$ the complete homogeneous symmetric polynomial of degree $r$ in the JM elements, coincides with the $r$th term in the asymptotic expansion of the Weingarten function. We use this connection to determine precisely which conjugacy classes occur in the class basis resolution of $h_r(J_1,...,J_n),$ and to explicitly determine the coefficients of the classes of minimal height when $r < n.$ These coefficients, which turn out to be products of Catalan numbers, are governed by the Moebius function of the non-crossing partition lattice $NC(n).$

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.