Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parallel Random Apollonian Networks

Published 27 Apr 2009 in cs.DM | (0904.4176v2)

Abstract: We present and study in this paper a simple algorithm that produces so called growing Parallel Random Apollonian Networks (P-RAN) in any dimension d. Analytical derivations show that these networks still exhibit small-word and scale-free characteristics. To characterize further the structure of P-RAN, we introduce new parameters that we refer to as the parallel degree and the parallel coefficient, that determine locally and in average the number of vertices inside the (d+1)-cliques composing the network. We provide analytical derivations for the computation of the degree and parallel degree distributions, parallel and clustering coefficients. We give an upper bound for the average path lengths for P-RAN and finally show that our derivations are in very good agreement with our simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.