Papers
Topics
Authors
Recent
Search
2000 character limit reached

Koszul duality of E_n-operads

Published 20 Apr 2009 in math.AT | (0904.3123v6)

Abstract: The goal of this paper is to prove a Koszul duality result for E_n-operads in differential graded modules over a ring. The case of an E_1-operad, which is equivalent to the associative operad, is classical. For n>1, the homology of an E_n-operad is identified with the n-Gerstenhaber operad and forms another well known Koszul operad. Our main theorem asserts that an operadic cobar construction on the dual cooperad of an E_n-operad defines a cofibrant model of E_n. This cofibrant model gives a realization at the chain level of the minimal model of the n-Gerstenhaber operad arising from Koszul duality. Most models of E_n-operads in differential graded modules come in nested sequences of operads homotopically equivalent to the sequence of the chain operads of little cubes. In our main theorem, we also define a model of the operad embeddings E_n-1 --> E_n at the level of cobar constructions.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.