Linear-time nearest point algorithms for Coxeter lattices
Abstract: The Coxeter lattices, which we denote $A_{n/m}$, are a family of lattices containing many of the important lattices in low dimensions. This includes $A_n$, $E_7$, $E_8$ and their duals $A_n*$, $E_7*$ and $E_8*$. We consider the problem of finding a nearest point in a Coxeter lattice. We describe two new algorithms, one with worst case arithmetic complexity $O(n\log{n})$ and the other with worst case complexity O(n) where $n$ is the dimension of the lattice. We show that for the particular lattices $A_n$ and $A_n*$ the algorithms reduce to simple nearest point algorithms that already exist in the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.