Communication-Efficient Search for an Approximate Closest Lattice Point
Abstract: We consider the problem of finding the closest lattice point to a vector in n-dimensional Euclidean space when each component of the vector is available at a distinct node in a network. Our objectives are (i) minimize the communication cost and (ii) obtain the error probability. The approximate closest lattice point considered here is the one obtained using the nearest-plane (Babai) algorithm. Assuming a triangular special basis for the lattice, we develop communication-efficient protocols for computing the approximate lattice point and determine the communication cost for lattices of dimension n>1. Based on available parameterizations of reduced bases, we determine the error probability of the nearest plane algorithm for two dimensional lattices analytically, and present a computational error estimation algorithm in three dimensions. For dimensions 2 and 3, our results show that the error probability increases with the packing density of the lattice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.