Papers
Topics
Authors
Recent
2000 character limit reached

Self-assembly of the discrete Sierpinski carpet and related fractals

Published 21 Jan 2009 in cs.OH | (0901.3189v1)

Abstract: It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal's triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree's tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues modulo a prime p of the entries in a two-dimensional matrix obtained from a simple recursive equation. We prove that every fractal in this class self-assembles using a uniformly constructed tileset. As a special case we show that the discrete Sierpinski carpet self-assembles using a set of 30 tiles.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.