Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strict Self-Assembly of Discrete Sierpinski Triangles (0903.1818v1)

Published 10 Mar 2009 in cs.DM

Abstract: Winfree (1998) showed that discrete Sierpinski triangles can self-assemble in the Tile Assembly Model. A striking molecular realization of this self-assembly, using DNA tiles a few nanometers long and verifying the results by atomic-force microscopy, was achieved by Rothemund, Papadakis, and Winfree (2004). Precisely speaking, the above self-assemblies tile completely filled-in, two-dimensional regions of the plane, with labeled subsets of these tiles representing discrete Sierpinski triangles. This paper addresses the more challenging problem of the strict self-assembly of discrete Sierpinski triangles, i.e., the task of tiling a discrete Sierpinski triangle and nothing else. We first prove that the standard discrete Sierpinski triangle cannot strictly self-assemble in the Tile Assembly Model. We then define the fibered Sierpinski triangle, a discrete Sierpinski triangle with the same fractal dimension as the standard one but with thin fibers that can carry data, and show that the fibered Sierpinski triangle strictly self-assembles in the Tile Assembly Model. In contrast with the simple XOR algorithm of the earlier, non-strict self-assemblies, our strict self-assembly algorithm makes extensive, recursive use of optimal counters, coupled with measured delay and corner-turning operations. We verify our strict self-assembly using the local determinism method of Soloveichik and Winfree (2007).

Citations (73)

Summary

We haven't generated a summary for this paper yet.