Papers
Topics
Authors
Recent
2000 character limit reached

On the vertices of the k-addiive core

Published 15 Sep 2008 in cs.DM and cs.GT | (0809.2525v1)

Abstract: The core of a game $v$ on $N$, which is the set of additive games $\phi$ dominating $v$ such that $\phi(N)=v(N)$, is a central notion in cooperative game theory, decision making and in combinatorics, where it is related to submodular functions, matroids and the greedy algorithm. In many cases however, the core is empty, and alternative solutions have to be found. We define the $k$-additive core by replacing additive games by $k$-additive games in the definition of the core, where $k$-additive games are those games whose M\"obius transform vanishes for subsets of more than $k$ elements. For a sufficiently high value of $k$, the $k$-additive core is nonempty, and is a convex closed polyhedron. Our aim is to establish results similar to the classical results of Shapley and Ichiishi on the core of convex games (corresponds to Edmonds' theorem for the greedy algorithm), which characterize the vertices of the core.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.