Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the set of imputations induced by the k-additive core (1102.1342v1)

Published 7 Feb 2011 in cs.GT and cs.DM

Abstract: An extension to the classical notion of core is the notion of $k$-additive core, that is, the set of $k$-additive games which dominate a given game, where a $k$-additive game has its M\"obius transform (or Harsanyi dividends) vanishing for subsets of more than $k$ elements. Therefore, the 1-additive core coincides with the classical core. The advantages of the $k$-additive core is that it is never empty once $k\geq 2$, and that it preserves the idea of coalitional rationality. However, it produces $k$-imputations, that is, imputations on individuals and coalitions of at most $k$ inidividuals, instead of a classical imputation. Therefore one needs to derive a classical imputation from a $k$-order imputation by a so-called sharing rule. The paper investigates what set of imputations the $k$-additive core can produce from a given sharing rule.

Citations (6)

Summary

We haven't generated a summary for this paper yet.