Papers
Topics
Authors
Recent
2000 character limit reached

Lower Bounds for Embedding into Distributions over Excluded Minor Graph Families

Published 29 Jul 2008 in cs.DS and cs.DM | (0807.4582v1)

Abstract: It was shown recently by Fakcharoenphol et al that arbitrary finite metrics can be embedded into distributions over tree metrics with distortion O(log n). It is also known that this bound is tight since there are expander graphs which cannot be embedded into distributions over trees with better than Omega(log n) distortion. We show that this same lower bound holds for embeddings into distributions over any minor excluded family. Given a family of graphs F which excludes minor M where |M|=k, we explicitly construct a family of graphs with treewidth-(k+1) which cannot be embedded into a distribution over F with better than Omega(log n) distortion. Thus, while these minor excluded families of graphs are more expressive than trees, they do not provide asymptotically better approximations in general. An important corollary of this is that graphs of treewidth-k cannot be embedded into distributions over graphs of treewidth-(k-3) with distortion less than Omega(log n). We also extend a result of Alon et al by showing that for any k, planar graphs cannot be embedded into distributions over treewidth-k graphs with better than Omega(log n) distortion.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.