Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diversity Embeddings and the Hypergraph Sparsest Cut (2303.04199v1)

Published 7 Mar 2023 in cs.DS

Abstract: Good approximations have been attained for the sparsest cut problem by rounding solutions to convex relaxations via low-distortion metric embeddings. Recently, Bryant and Tupper showed that this approach extends to the hypergraph setting by formulating a linear program whose solutions are so-called diversities which are rounded via diversity embeddings into $\ell_1$. Diversities are a generalization of metric spaces in which the nonnegative function is defined on all subsets as opposed to only on pairs of elements. We show that this approach yields a polytime $O(\log{n})$-approximation when either the supply or demands are given by a graph. This result improves upon Plotkin et al.'s $O(\log{(kn)}\log{n})$-approximation, where $k$ is the number of demands, for the setting where the supply is given by a graph and the demands are given by a hypergraph. Additionally, we provide a polytime $O(\min{{r_G,r_H}}\log{r_H}\log{n})$-approximation for when the supply and demands are given by hypergraphs whose hyperedges are bounded in cardinality by $r_G$ and $r_H$ respectively. To establish these results we provide an $O(\log{n})$-distortion $\ell_1$ embedding for the class of diversities known as diameter diversities. This improves upon Bryant and Tupper's $O(\log^2{n})$-distortion embedding. The smallest known distortion with which an arbitrary diversity can be embedded into $\ell_1$ is $O(n)$. We show that for any $\epsilon > 0$ and any $p>0$, there is a family of diversities which cannot be embedded into $\ell_1$ in polynomial time with distortion smaller than $O(n{1-\epsilon})$ based on querying the diversities on sets of cardinality at most $O(\logp{n})$, unless $P=NP$. This disproves (an algorithmic refinement of) Bryant and Tupper's conjecture that there exists an $O(\sqrt{n})$-distortion $\ell_1$ embedding based off a diversity's induced metric.

Summary

We haven't generated a summary for this paper yet.