Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Recovery of Sparse Signals via $\ell_1$ Minimization

Published 1 May 2008 in cs.LG | (0805.0149v1)

Abstract: This article considers constrained $\ell_1$ minimization methods for the recovery of high dimensional sparse signals in three settings: noiseless, bounded error and Gaussian noise. A unified and elementary treatment is given in these noise settings for two $\ell_1$ minimization methods: the Dantzig selector and $\ell_1$ minimization with an $\ell_2$ constraint. The results of this paper improve the existing results in the literature by weakening the conditions and tightening the error bounds. The improvement on the conditions shows that signals with larger support can be recovered accurately. This paper also establishes connections between restricted isometry property and the mutual incoherence property. Some results of Candes, Romberg and Tao (2006) and Donoho, Elad, and Temlyakov (2006) are extended.

Citations (155)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.