Papers
Topics
Authors
Recent
2000 character limit reached

Bipolarization of posets and natural interpolation

Published 17 Apr 2008 in cs.DM and math.PR | (0804.2819v1)

Abstract: The Choquet integral w.r.t. a capacity can be seen in the finite case as a parsimonious linear interpolator between vertices of $[0,1]n$. We take this basic fact as a starting point to define the Choquet integral in a very general way, using the geometric realization of lattices and their natural triangulation, as in the work of Koshevoy. A second aim of the paper is to define a general mechanism for the bipolarization of ordered structures. Bisets (or signed sets), as well as bisubmodular functions, bicapacities, bicooperative games, as well as the Choquet integral defined for them can be seen as particular instances of this scheme. Lastly, an application to multicriteria aggregation with multiple reference levels illustrates all the results presented in the paper.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.