Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Discrete Choquet Integral for Ordered Systems

Published 7 Feb 2011 in cs.DM and math.PR | (1102.1340v1)

Abstract: A model for a Choquet integral for arbitrary finite set systems is presented. The model includes in particular the classical model on the system of all subsets of a finite set. The general model associates canonical non-negative and positively homogeneous superadditive functionals with generalized belief functions relative to an ordered system, which are then extended to arbitrary valuations on the set system. It is shown that the general Choquet integral can be computed by a simple Monge-type algorithm for so-called intersection systems, which include as a special case weakly union-closed families. Generalizing Lov\'asz' classical characterization, we give a characterization of the superadditivity of the Choquet integral relative to a capacity on a union-closed system in terms of an appropriate model of supermodularity of such capacities.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.