Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Three-Color and Two-Color Tantrix(TM) Rotation Puzzle Problems are NP-Complete via Parsimonious Reductions

Published 12 Nov 2007 in cs.CC | (0711.1827v3)

Abstract: Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem with four colors is NP-complete, and they showed that the infinite variant of this problem is undecidable. In this paper, we study the three-color and two-color Tantrix(TM) rotation puzzle problems (3-TRP and 2-TRP) and their variants. Restricting the number of allowed colors to three (respectively, to two) reduces the set of available Tantrix(TM) tiles from 56 to 14 (respectively, to 8). We prove that 3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer and Holzer in the affirmative. Since our reductions are parsimonious, it follows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under randomized reductions. We also show that the another-solution problems associated with 4-TRP, 3-TRP, and 2-TRP are NP-complete. Finally, we prove that the infinite variants of 3-TRP and 2-TRP are undecidable.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.