Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Variable Hierarchy for the Games mu-Calculus

Published 12 Oct 2007 in cs.LO, cs.GT, and math.LO | (0710.2419v2)

Abstract: Parity games are combinatorial representations of closed Boolean mu-terms. By adding to them draw positions, they have been organized by Arnold and one of the authors into a mu-calculus. As done by Berwanger et al. for the propositional modal mu-calculus, it is possible to classify parity games into levels of a hierarchy according to the number of fixed-point variables. We ask whether this hierarchy collapses w.r.t. the standard interpretation of the games mu-calculus into the class of all complete lattices. We answer this question negatively by providing, for each n >= 1, a parity game Gn with these properties: it unravels to a mu-term built up with n fixed-point variables, it is semantically equivalent to no game with strictly less than n-2 fixed-point variables.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.