Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoencoder, Principal Component Analysis and Support Vector Regression for Data Imputation (0709.2506v1)

Published 16 Sep 2007 in cs.AI and cs.DB

Abstract: Data collection often results in records that have missing values or variables. This investigation compares 3 different data imputation models and identifies their merits by using accuracy measures. Autoencoder Neural Networks, Principal components and Support Vector regression are used for prediction and combined with a genetic algorithm to then impute missing variables. The use of PCA improves the overall performance of the autoencoder network while the use of support vector regression shows promising potential for future investigation. Accuracies of up to 97.4 % on imputation of some of the variables were achieved.

Citations (18)

Summary

We haven't generated a summary for this paper yet.