Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stochastic Optimization Algorithms

Published 28 Apr 2007 in cs.NE | (0704.3780v1)

Abstract: When looking for a solution, deterministic methods have the enormous advantage that they do find global optima. Unfortunately, they are very CPU-intensive, and are useless on untractable NP-hard problems that would require thousands of years for cutting-edge computers to explore. In order to get a result, one needs to revert to stochastic algorithms, that sample the search space without exploring it thoroughly. Such algorithms can find very good results, without any guarantee that the global optimum has been reached; but there is often no other choice than using them. This chapter is a short introduction to the main methods used in stochastic optimization.

Citations (54)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.