Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cohomological $χ$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles (2012.06627v3)

Published 11 Dec 2020 in math.AG

Abstract: We prove that the intersection cohomology (together with the perverse and the Hodge filtrations) for the moduli space of one-dimensional semistable sheaves supported in an ample curve class on a toric del Pezzo surface is independent of the Euler characteristic of the sheaves. We also prove an analogous result for the moduli space of semistable Higgs bundles with respect to an effective divisor $D$ of degree $\mathrm{deg}(D)>2g-2$. Our results confirm the cohomological $\chi$-independence conjecture by Bousseau for $\mathbb{P}2$, and verify Toda's conjecture for Gopakumar-Vafa invariants for certain local curves and local surfaces. For the proof, we combine a generalized version of Ng^o's support theorem, a dimension estimate for the stacky Hilbert-Chow morphism, and a splitting theorem for the morphism from the moduli stack to the good GIT quotient.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube