Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Risk Estimation in a Markov Cost Process: Lower and Upper Bounds (2310.11389v2)

Published 17 Oct 2023 in cs.LG and stat.ML

Abstract: We tackle the problem of estimating risk measures of the infinite-horizon discounted cost within a Markov cost process. The risk measures we study include variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). First, we show that estimating any of these risk measures with $\epsilon$-accuracy, either in expected or high-probability sense, requires at least $\Omega(1/\epsilon2)$ samples. Then, using a truncation scheme, we derive an upper bound for the CVaR and variance estimation. This bound matches our lower bound up to logarithmic factors. Finally, we discuss an extension of our estimation scheme that covers more general risk measures satisfying a certain continuity criterion, e.g., spectral risk measures, utility-based shortfall risk. To the best of our knowledge, our work is the first to provide lower and upper bounds for estimating any risk measure beyond the mean within a Markovian setting. Our lower bounds also extend to the infinite-horizon discounted costs' mean. Even in that case, our lower bound of $\Omega(1/\epsilon2) $ improves upon the existing $\Omega(1/\epsilon)$ bound [13].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: